NASA TECHNICAL TRANSLATION NASA TT ¥-14,120

ON THE OCCURRENCE OF LONGITUDINAL VORTICES IN TURBULENT
BOUNDARY LAYERS AT CONCAVE WALLS

G. Sandmayr

Translation of: "Euber das auftreten von Laengswirbei.]n
in Turbulenten Grenzschichten an Konkaven Waenden',
Deutsche Luft-und Raumfahrt. DLR FB-66-41/June 1966

49 pages.
- TR - -
i g ——RccEEONNUNBER o oF N72-18276
,-~”*”"”“*;‘d120)3 ON THE QCnggggcgouNDARY
{(ﬂﬁsﬁéﬁﬁiﬁgL VORTICES IN Tﬁagénamayr tnclas
igggﬁs AT CONCAVE WP?ii Si%&ice)» Feb. 19%3 63/12 16706
"(Scientific Translation Sel o C_S,C.L'z;,; 2

—

e . . ST

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. " 20546 FEBRUARY 1972

“”ﬁyzf_;&ed by "~ T o e e
‘ IONAL TECHNICAL
‘ INFPRMATION SERVICE

Department of C
Springfield VA '..;,2','1"'5“19":e



ON THE OCCURRENCE OF LONGITUDINAL VORTICES IN TURBULENT
BOUNDARY LAYERS AT CONCAVE WALLS

" G. Sandmayr

ABSTRACT. The existence of periodic longitudinal
vortices in a turbulent boundary layer along a concave wall
is investigated. In addition to the velocity profile, a
profile of the eddy viscosity and the Reynolds number are
given. The eigenvalue problem is approximately solved for
neutral distuﬂbances and for a particular boundary layer
by Galerkin's method, described by P. S. Klebanoff. The
curve of critical curvature has a minimum for a certain wave-
length of the disturbance. Within a certain range, it hardly

- changes with the Reynolds number. These results agree with
experiments by I. Tani.

1. INTRODUCTION

In order to obtain some ideas on the origin of turbulence, there has often
been interest in the stability of laminar boundary layers in relation to small
perturbations compatible with the hydrodynamic equations of motion. At first
there were studies of two-dimensional Tollmien-Schlichting waves propagating in
the direction of flow. They received extensive theoretical and experimental
study first in flows along plane walls and also, later, in flows along curved
walls (see, for example, [1], Chapters XVI and XVII with extensiveé bibliogra- °

bhie$>J

Then, in 1940, H. Gbrtler introduced a relation for caléﬁlating the three-
dimensional instability of laminar incompressible boundary layer flows‘at con-
cave walls. It dealt with perturbations in the form of equidistant vortices
having their axes in the direction of the basic flow [2]. G. I. Taylor [3] had

previously demonstrated that similar vortices can originate in the flow between



two coaxially rotating cylinders, if the inner cylinder rotates faster than the
outer one. The boundary layer flow mentioned above can be understood as a
Taylor flow, in which the unperturbed outward flow takes the place of the

internal rotating cylinder.

In a linearized theory, the law of vortex instability leads via the
Navier-Stokes equations and the continuity equation, with consideration of the
edge conditions for the perturbing quantities, to a three-parameter eigenvalue
problem with the number , which still depends on the separation of the
vortices and on a temporal regeneration factor, as the eigenvalue. Hereﬂf]is '
a measure of the boundary layer thickness; Re is the Reynolds number generated
from[§ﬂand the 0utwafd flow; and R is the radius of curvature of the wall near
which the flow passes@%}i{iﬂ. As in previous stability investigations, here
too it is necessary to neglect changes in the basic flow and in the perturbing
elements in the flow direction in order that the calculations can be performed.

The basic flow is assumed to be steady.

For physical reasons, we are especially interested in the smallest positive
eigenvalue of the problem. With neutral flows, i.e., those in which there is
neither damping nor buildup, it forms, depending on the thickness of the vortex /8

assumed, a so-called critical curve, to which the following significance is

ascribed: 1If the value @ed g for a certain flow is below the critical value,

then every perturbation of the type assumed will be damped. 1If it is above the

critical value, then they can be built up, finally leading to turbulence.

The eigenvalue problem was approximately solved by H. Gortler. Following
works supplemented the theory and refined the numerical treatment [4, 5, 6].
G. Hammerlin [7] finally extended the stability investigations to laminar boun-

dary layers in compressible media at different wall temperature relationships.

In this work we shall investigate the occurrence of longitudinal vortices

in turbulent boundary layers. That is, if we consider turbulent flows which



may be divided into a time-averaged steady portion and nbnéteé&y: fluctuations,
then the boundary layer theory can be applied to the time-average, with appro-
priate additional assumptions. Thus,it isrobyiogs to ask whether longitudinal
vortices can also>be produced at concave walls by the interaction of centrifugal

force, pressure, and viscosity forces.

Actually, I. Tani [21] in the experimental study of turbulent boundary
layers at concave walls has established periodic fluctuations of the lines of
constant velocity, which can be explained as resulting from the occurrence of
longitudinal vortices. We shall compare the values obtained theoretically

;with the experimental results:

I thank Prof. Dr. H. Gortler for providing the impetus for this work. I
would also like to thank Prof. Dr. E. Becker and especially Lecturer Dr. G.
Hadmmerlin for their active interest in the performance of this work, and for

many valuable suggestions.
2. THE BASIC EQUATIONS OF TURBULENT FLOW

The :§§§§§§58§Jflow of an incompressible viscous fluid is described by the

Navier-Stokes equations (see [8], Chapter IV, 2; or [1], Chapter III f)

0w ) iv
QF = o grad p + divﬂ (2.1)

and by the continuity equation

e
Here 88 is the velocity vector of the flowing medium with components u, v, w
in the directions of the orthogonal coordinates x, y, z; p is the pressure, g
the density, andjj}the tensor of the friction stresses. 1 = u(x,y,z) is the

" dynamic viscosity depending on the location. By~div,j]we mean the vector of

divergence of the row vector ofEE. D/Dt symbolizes the hydrodynamic derivation:

with respect to time.



From (2.1), and considering (2.2), we obtain for an arbitrary orthogonal

system the equations of motion

{g{é-t—m‘wm roﬁﬁl#"zﬂgrad (102” = o grad P]

Z- u rot (rot4d ) + gradp xrotw +2 {(grad m ) grad }W/_J (2.3)

\9[—- ~10 X Tot + -2- grad (w )]]

or, in case U = constant,

== grad p - p rot (rot ¥ )‘"j (2.4)

To this we add the problem of the appropriate edge conditions.

In turbulent flow, the main movement has superimposed upon it an irregular
fluctuating movement, so that the velocity and pressure are not constant at a
fixed point in space. To represent the flow it is expedient to divide the
instantaneous flow, according to O. Reynolds [9], into a time~steady portion
averaged over a long period, and a;ﬁpﬁ;tgé&§]fluctuation. The fluctuation
superimposed upon the main flow is so complex in detail that its theoretical
calculation seems beyond hope. We shall limit ourselves to considering its
effect on the average motion. That is, the mixed motion which it causes acts
as if the viscosity were apparently very greatly increased.

If we designate the time-average values vf the flow quantities as G, 5,
W, p, and the instantaneous deviations from tham as u', v', w', and p', then

for the actual velocities and pressure we have

!ﬂ"'ﬂ* ande-;{,p'.

(1)The fact that the last summand is also 1ndependent of the coordinate
system appears from the identity:

! .
|2 {(grad W) grad }u s - rot (grad u X¥) + grad p div 4

-40 div (grad p ) + grad l(grad M )‘W} - grad-u x rct 10

j
|
‘10 x rot (grad B)
.

/10
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in which the time interval (1'1-) is chosen so large that f becomes independent
of to' and 1. Further, the temporal limits should not depend on the location.
Then differentiation and averaging are interchangeable.

We introduce the expansion of j45) and p into the equations of motion (2.4)
‘and the continuity equation (2.2) and form the time average value by terms.
Then all the linear expressions in the fluctuation magnitudes drop out, and we

obtain . - -
9( W xrotw + % grad (10 2)} = « grad p

- M Tot [rotsd) +Q ' X rotw' - %g grad (1002) (2.5)
{jivi;: 0 ‘ (2.6)

‘Because ,&-ﬁ?“ = 4ivis + dives's O und dives = 0] it also follows that div/eel= 0. /11

If we subtract the term[e W' divee'= 0| from the right side of Equation (2.5), .

all the expressions which affect the turbulent fluctuation motions can be com-

-

bined into a vector, divm where [#!|is the symmetrical matrix

w? T T
¥oce | oo W7 ww

utw! viuw! v'2

[&

'As we can see from comparison of Equation (2.5) with the Navier-Stokes equations
(2.@) or (2.1), in the equation of motion for the time average we have added to

the stress tensor of laminar friction, here designated @‘, one more stress



- tensor EEL the tensor of turbulent apparent viscosity. It was derived first

by 0. Reynolds [9] from the hydrodynamic equations of motion.

Edge conditions: All the components of and ) vanish at solid walls.
The fluctuation components are also very small near the wall. From this it
follows that all the components of the .tensor of turbulent apparébt friction
f}ikewise vanish at solid walls, so thaé only the viscous stresses of laminar
. flow remain. :
Calculation of the average motion from Equation (2.5) is possible only if’
~the apparent stress of turbulent flow can be expressed by the values of the
average motion, so that the differential equations contain only the average
velocities and the average pressure. To achieve this, we assume, following
I. Boussinesq [10] (ef. [11], page 124) that the mixed motioﬁ i; simply equi~

valent to an enlargement of the viscosity effect, setting

The quantityEﬂ?; which expresses the intensity of the mixed movement, corresponds

to the viscosity parameter p of the Stokes friction law. But the "apparent" /12
kinematic viscosity € is numerically much larger than the corresponding value

v of the laminar flow., We no longer are dealing with a material parameter.

Instead, € varies from case to case. In general, it depends on the spatial
coordinates. In the individual case, it can only be decided experimentally how

large the turbulent viscosity must actually be chosen.

In the case of|simple, plane shear flow u = u(y), v = w = 0, with du/dy
> 0, which we shall take up later, we obtain approximate values due to the
following considerations: Of the components of the tensor[!ﬂ, there remains

only the supplementary turbulent thrust stress

;itn'.-g Wﬂgc g—‘




With Ehis flow, the time average of the velocity fluctuations u'v' can be
‘measured for any distance from the wall (see section 5); or, by means of various
empirical laws, it.can be linked.with u(y) (e.g., the Prandtl mixing method
formula, the voﬁ Karman similarity hypothesis:| see [1], Chapter XIX). At any

time, the apparent turbulent viscosity can be determined as a function of) '

Lt(y) - - @‘l
- du/dy .

For the total thrust stress of the flow, we can write

the wall distance from

tﬂ O?n + tx" = (p +Q €) &,2 - ll.ff %]

in which the "effective" viscosity Mogs is given by

d;/dy (2.7)

“offr YH -9 X \

(see [8], Chapter V, 9).

In the general case, too, we can formally combine the laminar viscosity u
and the turbulent apparent viscosity @ into a quantity Mofs and say: Boundary /13
layer theory can be applied to the time-averaged value of the turbulent flow,
'if we take the fluctuation motions into account in the calculation by replacing

the molecular viscosity by the much greater effective viscosity.

Corresponding to (2.3), then, the equations of motion for the average

motion are

c(;if_ -1'37 % rot ¥ +% grad ({72))

- -grad p - B grg-TOt (roti#) + grad More X rot 0 . (2.8)

: + 2 [(8‘"4 u.ff) &'ld’ 1-'.. o

— _— =




Because we are dealing here with a steady flow with[ii:iii](x’y’z)’5§%gj = 0.

We shall keep the expression now so that we can later superimpose on it the

non-steady perturbatibns. - .-
3. THE COORDINATE SYSTEM

The following considerations are based on a coordinate system already
used by G. Himmerlin [7]. It is better suited to the flow conditions than the
cylindrical coordinate system previously used in instability demonstrations
of laminar flows. The usual approximations undertaken there in the boundary
layer and extended to the exterior flow correspond to transition to a coordinate
system in which the wall andziﬂthe coordinate lines ( = flow lines) have the
'same constant curvature. In order to avoid error with this model, vortices of
great thickness, which extend beyond the boundary layer, must be treated sep-

arately.

In the new system, we hypothesize that the segment of wall over which the
flow passes, with constant radius of curvature RO, is in the neighborhood of
the valley of a wavy wall. The coordinate origin is placed at the point of
the valley. We keep the assumption that the basic flow does not depend on the
wall arc length. 1In this way, the amplitudes of the perturbing functions can
later be taken as functions of the distance from the wall alone. Then the
stability study leads to an eigenvalue problem in a system of ordinary differ- /14

ential equations.

As H. Gortler [12] has shown in an investigation of the laminar boundary

layer at a wavy wall, the radius of curvature of the flow lines for x = 6—111:i
increases exponentially with increasing distance from the wall. In the

vicinity of this line, therefore, it is reasonable to insert for the radius

of curvature R(y) = Roeky, where y designates the perpendicular distance from -
the wall and the parameter k is still assumed to be given. Now we choose a
family of coordinate lines of our system, so that it coincides with these

-flow lines.

8



If we designate the Cartesian coor-

~ ~ ~

dinates as &, n, ¢, and those of the

new orthogonal system as x, y, 2z, then we
obtain the following relation (see

Appendix 1, page 35):

oL
- kR(yS
E=xe °e ’
V-
L.ZQ
. . . 2 2.2 2
Figure 1. The coordinate system. In the line element ds™ = h1 dx— + h2
dy2 + h32dz2,
L 3
kRo kﬂlys
h1-e e ,h2-h3-1
a M 1 h,’ k g
and. |1 _ —)1 ! e -,
g Rlys (h1 ) 162 i dy
4. DERIVATION OF THE PERTURBATION DIFFERENTIAL EQUATIONS /15

In the coordinate form, the equations of motion (2.8) for turbulent flow

(2.8) and the continuity equation (2.6) are

; 3‘

B ) =

EEro - _' - h,' _ -
*;%(“ott)xluz*h*l": }"T‘I‘.gg),l",'f}‘“*t'x}

+ ('“off)s l ;: = %T;z}




+ (u.rr)y { -;z + ;y} + 2 (“'ff)l ;’

h

1-1
b “x *E

+vy+'z = 0,

<4

o~

SO S N

As we assume that changes of flow in the x-direction can be neglected, all

derivatives with respect to x vanish from the equations.

S

h

)
1 T

y

Now if we insert

ht
and (.ﬁ.L.): - IT%.%and transform the coefficients of Mogs in the
Yy

second and third equation of motion by means of the continuity equation, we

obtain the differential equation system

10

olu, « ¥

--R-G-)-: +-- l- u.ﬂ.‘uw«@u“

- - 4=y 3
--n-(-ﬂ-uy} + (ﬂ.ff),[“,*m“l*(“off)z‘;‘z

+
5
4!

y ;? +mu}--py+u°“[ Vs

—(jvy} +2( P.rr) ' + ( ueff)z[;z*:y}

I

j
l}*( “.rf) (voevgl v2Cmpgd, v

I

-t

- — - - v v ’ v
v +vvy+vwz] =P, * u,“['n*"u‘nlyi vyl

(4.1.1)

(4.1.2)

(4.1.3)

/16



CaTen, 5 o] (1

As the basic flow, we choose a motion which is turbulent in the boundary layer,
with a steady mean:YPlue which is assumed to depend only on the distance y from

the wall. Let the time averages of the components ﬁo(y), v, = 50 = 0, ﬁo(y) and

0
‘ueff(y) be solutions of system (4.1).

So as to be able later to demonstrate the instability of this flow with
respect to longitudinal vortices, we shall first derive the differential equa-
tions for small perturbations, which we superimpose on the basic flow in the

following form:

i = u(y) + u (y,2t)
- *
v - v (¥y2,t)
v - v (ys3,t)
; - io(Y) + P'(Yozvt)
Boerr = Morel¥)

In this first approximation we do not consider perturbations of the turbulent
viscosity ueff(y), which can itself be calculated from averages of the fluc- /17

tuation velocities.

Because of the assumption of small perturbations, we may linearize with

respect to the starred values. The statement then leads to the differential

?’dz ; Y - L]
# “1GP - e "n' Vs 3_1%77“

equations

L * (4.2.1)
o L 4
« (ngee)y Loy + g5y}
- 2 = = l ry ' [ " " X -
t *ROGT VR TRy Rl Vyy YV YEGYY
(4.2.2)

11



t‘” ."ﬁ * Rorr [' "n m y'

(4.2.3)
’(“otr) (v +%')
T+ » *
FEGTT A e - o 4.2.4)

We add the conditions for adhesion to the wall and for decay of the perturbations

for y » «:

\u’(o,z.t) - v’(O,z.t) -v {O,z,t) = O

and

» » _"
lim  u (y,2,t) = lim v (y,2,t) = 1lim v'(y,:,t) =0,
Y=o Yoo o0 N o L] .

As can be shown later by means of the exact solution in the external region,

*
the relation 1lim p (y,z,t) = 0 is also valid.
g > )

The assumption that y << R(y) is justified for all values of y if we
consider that RO >> 6 (8§ = boundary layer thickness) and if we accept the
experimental value k = 1/26(2) as the average value at a wavy wall. Then we

have

,“’14 R .x'.xo(i + %‘ + oo )>>‘ 4 .'

Follow1ng the deliberations in [2] and [4], becauseh-rT} |<¢|u |and

R1y |u |<<|u q, we neglect the terms on the left in these approximations

because they are related to each other as y/R(y) to 1. Further, it is true

thatm ‘ivh--“k<|u” I We proceed correspondingly for the other two velocity

components.

V(Z)The value k 6§ = 1/2 was previously used by G. Hidmmerlin in the numerical
calculations. It is taken from a work by H. Witting [13], in which the forma-
tion of vortices was investigated in the boundary layer along a wavy wall.

12



In (4.2.1) we may also neglect EO/R(y) in relation to dﬁO/dy. The esti-
mate is justified within |the boundary layer. In the laminar external flow,

we have

- du u
|rot10°| -I‘d] +_R_(?)_.|- c.

Now we consider special perturbations of the Taylor-Gortler vortex type,

and set

“'(yoiot) u1(y) cos w3 ebt
L J

v (yo3,t)
"\Yv'vt) - V1(y) sina z e B

P (vs3,t) Py(y) cos @ z o P¥

v1(y) cos € 3 e ﬂt
t

in which o = 2m/X, A = wavelength of the perturbation, and B = damping function

constant.

Thus (with the primes indicating derivatives with respect to the argument

y) system (4.2) transforms into

oy " 2
RUPuy + vy ut) m opeluy” - a%uy) + e uy (4.3.1)

2= 2 '
e(p v1' +5G7 % u1) =~p'+ u.ﬂ.(-a v, + v1") (4.3.2)
+2 '“eff v1'

11} 2
gPvy =Pyt lleff(v1 -« v1) + u'err(- «v, + u1'~) (4.3.3)

v1' +a v, =0, (4.3.4)

In treating this system, we shall first replace LAY by Vs according to
(4.3.4). It would also be possible to eliminate pl(y), but then the second

~derivative of the turbulent viscosity ueff(y) would appear. As we shall see
]\

: S
in Section 5, this profile cannot be given with sufficient accuracy. ThHus we

retain Py for the numerical calculations.

13



Now we introduce dimensionless quantities by

v 113
u--—‘-. Ma u.ff C = ud 1
'- _ a.o“
V-F Re u-——u?- Y = k6
2 §0p ¥ d
) --—-Ene B = N = Vel
u
s-anoz-g- nit Re = Som’
° B )

Here u_ designates the velocity and p_ the viscosity of the laminar external

flow. Re is the Reynolds number formed with the external flow and the boundary

layer thickness. Also, from the definition of Hogs in (2.7) it is true that

5 nm—
Mot g 8 TV 4, pean) ,
Reo B  dU/dy

if U', V' are fluctuation velocities of_ﬁ(n) and m(n) is a profile of the

dimensionless kinematic viscosity, to be determined experimentally.

The value ¥y = k8§ = 1/2 is to be used in the numerical calculations. It

*
matches the real conditions at a wavy wall .

Now, the differential equations of the perturbing quantities u, v, p have
the form

\M(n" -o'zu) +M'u! =Bu - v U* -\0]

(4.4.1)
M(v" -0%v) + 2M'v' = Bv =S e '" Tu-p °°| C (4.4.2)
m(v"' —o%v) + M (v +6%) - BV - ¢%p o 0"-! (4.4.3)

*
Translators Note: See footnote on page 12.

14



The edge conditions transform to

Ea« vevi o |fof|T=0[andj 'l]-»o‘and ‘ P(")=0-J ’ ‘ /20

In the particularly important case of neutral perturbations, i.e., those

which are neither built up nor damped, because B = 0, the system simplifies to

M(u"-c’zu)-fM'u' -v U -z] ’ (4.5.1)
M (v -dzv) +2Miv 25" Ju - p -9] (4.5.2)
IM(V"' _02v|) + Ml(vll +62v) -czp'- OJ (4.5.3)
u=v=v =0forn=0and n~>c

-or, if we neglect the difficulties in calculation of M" and insert p from

(4.5.3) into (4.5.2), to

M (u® -cau) + M -v D --(L]

(4.6.1)
IM(VN -20% + ghv) e 2 M (v . q-zvt)J 4.6.2)
\"' M (v +d’2v) +0%s e-Yr‘ﬁ u=0.

Thus the rule for vortex-like perturbations leads to an eigenvalue problem
2
(S/R0

(Gortler parameter) as the eigenvalue. But, differing from previous studies

with the parameters Re, ¢ and G/RO. We can consider the nﬁmber S =2 Re

with laminar flows, here the Reynolds number is already established by the

choice of a particular viscosity profile.

The calculations which now follow to determine the smallest positive
eigenvalue of the differential equation system (4.5) are to demonstrate

the occurrence of longitudinal vortices at a concavely curved wall with

15



turbulent basic flow, and to privide, at least within an order of magnitude,
.information on the curvature at which a vortex of given wavelength can just be
maintained, without_decaying. -For a-fixed Reynolds number,- then, the curve

of critical curvature S or §/R. can be calculated as a function of ¢. Finally,

0
we shall determine the effect of a change in the Reynolds number on these

figures.
5. THE TURBULENT BASIC FLOW /21

Before we can apply ourselves to the solution proper of the eigenvalue
problem, we must obtain a profile U(n) for the time average velocity of turbu-
- lent basic flow along a weakly curved wall. The basic profile used in the
following is taken from a work by P. S. Klebanoff ([18], Figure 3), in which
he reports the results of measurements with longitudinal flow along a flat
plate with zero pressure gradient. (The~§?ynolds number of the flow at the
u_x 6 or’ﬂu' 5

measuring point is given as| > _.'4.2 . 10
Yeo | Veo

Because the curvature is weak, the flat plate is a usable approximation. 1In

- 7,4 - 108
the work cited, we also find information on the distribution of the turbulent
fluctuation velocities in the boundary layer. We will use them to derive a

basic viscosity profile.

In relation to the numerical solution of the differential equation system,
it was expedient to approximate the basic profile and its derivatives by poly-
nomials. In order to cover the course of the curves well, we have divided them
at appropriately sélectéd points and defined the approximation polynomial in
each of the intervals thus produced in such a way that the values of the func-
tions and of the first derivatives agree at the junction points. By pfescribing
other functional values and derivative values at various supporting points
within the intervals, we could in general achieve agreement between the curves
prescribed graphically and the approximate curves described by the polynomials,
within the presently possible accuracy of drawing. The approximaﬁing poly- ’

nomials are listed separately in Appendix 2 (pageiﬂﬂ).

16



"Figure 2 shows the distribution of the average velocity ﬁ(n)fin the
‘boundary layer, according to P. S. Klebanoff, and the derivative of the velo-
city profile. The curve near the w?ll i§AQ}QEEgdl§SBgF§t§1y._ As we can see
from the diagram, the.;eloéi£§7§r§file of the turbulent boundary layer is
~ characterized by a steep rise.at the wall and a rather even course in the rest
of the region. The derivative U'(n) was obtained by graphical differentiation

. of the basic profile.

Figure 3 shows the curve which Klebanoff ([18], Figure 5) called /22
LEL!L - sy )(u', v' fluctuation velocities). It describes the course of the

LE;oz
entire thrust stress ‘ﬁ‘of turbulent flow.

S : |
K/m/' 1

o) N

) . | N
—— —4- |

Figure 2 Figure 3

At the measuring point nearest the wall (n = 0.035) the frictional stress

reached two percent of the total wvalue.

m(") ; “'V'/uuz v
The desired profile | dﬁ/dn dﬁ/dd’ which denotes the

dimensionless turbulent apparent viscosity, was calculated point by point from
the quotients of the approximation polynomial for the turbulent thrust stress /23
s(n) and for the derivative of the basic profile. It is plotted with respect

to n in Figure 4.

17



‘I N The curve was modified slightly

in the intervals 0 < 1 < 0.1 and
'f\ ///’—\\\ -0.9 <n < 1, so-that the boundary
43l 15 conditions m(0) = m'(0) = 0 and

m(l) = m'(1) = 0 are fulfilled. They

correspond to the disappearance of

" the ‘additional viscosity in the lam-

inar underlayer and on tramsition in-

to the external flow. The points of

inflection, which must occur in the -

given intervals, could not be deter-
mined exactly. Thus the approxima-

tion of m(n) in the boundary regions

: 0 is quite inexact. For the approxi-
jﬁg ‘\\\ I mation of m'(n), essentially the
‘f, derivatives of the approximation
\\\\\; .8 polynomial for m(n) were used.

. ~~ m'"(n) can no longer be stated with
] a5 1 g .

reasonable accuracy.

.

Figure 4. The dimensionless turbu-
lent apparent viscosity and its 6. SOLUTION METHODS
derivative.

In the case where M™ 1, wé have

M at S, the perturbation differential

from (4.6), except for the factor e
eqﬁations for a laminar incompressible boundary layer flow which have been
treated often already. In [2] and [4] this system of differential equations
‘is converted by means of Green functions into a system of integral equations.
EThe principle of Jentzsch (see [4], page 290) then guarantées the existence
of a simple, positive‘smallest eigenvalue with its eigenfunctions, which can be .

obtained by an'iterationj procedure given by H. Wielandt.
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Because M = M(n), and in the case of a turbulent boundary layer, this
method corresponds to the transition from a differential equation system -(4.5)
to a system of integral -and -differential equations,-with- the -added difficulty
that derivatives of unknown quantities still occur in the integrands. The

numerical effort is considerably greater here than in laminar boundary layers.

Because of the unfavorable form of the coefficients!, the use of difference
methods for numerical determination of the eigensolutions of the differential

‘equation system involves great difficulties.

But, on the other hand, the differential equation system can be handled
by means of approximation methods. R. C. di Prima [14, 15] and A. M. O. Smith
[6] use the method of Galerkin [16, 17] in particular to determine the eigen-
values and eigenfunctions of similar systems of differential equations in hydro-
dynamic stability investigations. As this method has proved very effective in‘
many cases, and because it is relatively simple to apply, we use it to derive

a first approximate solution.

The method of Galerkin is described extensively in Appendix 3, so that
‘we can limit ourselves to a brief explanation here. We start with the eigen-
value problem (4.5). 1In place of the dependent variables u, v, p, approximate
solutions 4, ¥, p are introduced into the differential equations. Here we are
dealing with a linear combination of e%ch of q linear independent functions,
each of which fulfills its boundary conditions in detail. The Galerkin method
consists only in determining the 3q constants of the starting set, so that now
the expressions on the left side of (4.5) are orthogonal to certain starting
" functions in the integration interval (0, «»). To be sure, if the first expres-
sion is orthogonalized to all the starting functions for u, the second and
third are correspondingly orthogonalized to those for v and p. Thus we obtain

a system of 3q linear homogeneous equations. This can be written in matrix

notation as ga +5D)c= q iot] and are square matrices of 3q columns, and

¢ is the column vector of the unknown constants. By means of the iteration
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method, we calculate the smallest positive eigenvalue S1 agh its constants from
the linear equation system. Sl’ and the functions {4, ¥, p represent approxi-

mations to the smallest positive.eigenvalue of  (4.5)- and its eigenfunctions.

The accuracy with which the eigenébiutidﬁé‘ of the differential equation
system are approximated by the linear equation system depends essentially on
‘the prescription of suitable starting functions. It can be improved further
if the number of starting functions is increased, but this also increases the
.cost of the work and the errors in the numerical computation. The following

considerations were decisive for the selection of the starting functions:

Because U(n) = 1 and M(n) = 1, in the region n > 1, differential equations

(4.5) simplify to

u -0%u =0 ufe)=0
Vv - qzv - p! =S Q‘Y" u=20 V(..) =0
vi. ‘2v, - c2p =0 . vi(ee) =0

with the solutions (di = constant; i = 1, 2, 3)

u=4d, e (6.1.1)

- -(e+y)m
=- - S
v = (d,+dsm)e [(04y)2- o) ° : (6.1.2)
S (T ey)d
\p = 24, e'o_‘_?+‘—-——-—-721 S e-(€+v),‘,.»‘. (6.1.3)
* (c+v ;-0
Thus as n =+ « all the eigenfunctions approach zero at least as ;;pidly as 
e " or ne—cn._ From (6.1.1) and the boundary condition u(Q) = 0, it also

- follows that the continuous differentiable function u(n) has at least one
extreme in the interval 0 < n < 1 and that the sign does not change for n > 1.

Also, v(n) has at least one extreme in the interval 0 < n < =, "
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Functions of the form h(n) = (1 - e_n)n e ™" with integral non-negative n

and r show a similar course. As all the boundary conditions of (4.5) are also .

satisfied with satisfactory choice of the exponents, we can use linear combin-

ations of such functions as approximate solutioms.
7. RESULTS

First, approximate values S for the smallest eigenvalue of (4.5) were
calculated by the method described in Section 6 and Appendix 4, with various
combinations of two to ten starting functions each. With the parameter values

0 =1 and Re = 7'104 maintained, the following results were obtained:

Depending on the comb}hation of the starting functions used for the
approximation, the eigenvéiues and eigenfunctions varied for the same number
q of starting functions. For q - 3 the eigenvalues are approximately in the
range 7.5'105 §_§ 5_2.3’106. With g = 4, the range of variation is som%ﬁhat
smaller, and the eigenvalues lie within the limitsr7'105h§_§ 5_1.5'106. The

differences, which are in part considerable, can be explained thus:

In the computation of the elements of the matrices and @, there

appear as integrands products of coefficient functions of the differential

equation system with starting functions and their derivatives. As the coeffic-

ient functions ﬁ'(n), M(n) and M'(n) have distinct extremes in the interval
[0, 1], the course of the in;?grand functions, and thus the value of the
integrals, is strongly affected by the choice of the startihg functions. But
changes in the magnitude and signs of the matrix elements cause shifts in the

- eigenvalues.

If we add more starting functions to an already existing combination, we
can observe no convergence of the solutions toward a difinite wvalue. Rather,
the eigenvalues with these approximations generally become somewhat smaller,

while the eigenfunctions usually show greater fluctuations. Here it must

N
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certainly be considered that, with six

or more starting functions, the errors

which occur in the numerical treatment

of the problem become significant. They
can to some extent considerably falsify
the rssult. As we can in any case except
only an order-of-magnitude view of the
solutions, we shall in the following be
satisfied with a 'small number of starting

functions.

Our next objective is to investigaté
the dependence of the parameter S on the
wavelength ¢ of the prescribed perturba-

tion. Three different typical approxima-

tions to the curve of critical curvature

are plotted in Figure 5. Combinations of
three to five starting functions were

used to compute the balue §. These

closely approximate the appropriate eigenfunctions in the vicinity of the point

o = 1. Individually, they are (see Appendix 4 for the notations):
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(c)

like (b) with k = 1, 2, 3, 4, 5.

By means of the example solutions plotted in Figure 5, we can clarify
the differences which can occur among the approximate valuesfgvfound for a
prescribed wave length o. But it is a:common characteristic of all of the
curves §$(o) that they show a minimum for a definite o, rising steeply for
larger and smallerwvalues of the parameter. We may assumé that the exact

solution also behaves in this way, and that there is a smallest critical curva+

ture for a prescribed turbulent boundary layer flow. To be sure, we cannot
i

' make any exact statements on the position and value of the minimum on the basis

of the approximations we have.

Figure 6 shows the curves for the eigenfunctions {(n) and ¥(n), which b /29
appear in the computation of S by means of the starting functions (a) and (b)
for the parameter values ¢ = 1 and Re = 7 - 104. In each case, Max u(n) =1
and Max I ;(n) | = 1 were chosen for normalization. The eigenfunctions hardly

change as long as ¢ is in the interval [0, 1;2].
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Figure 6. Approximations for the eigenfunctions
u(n) and v(n). ' 4
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In order to compare the curves of critical curvature at different

Reynolds numbers, we refer all quantities to the displacement thickness 6%

23




; " or to the pulse loss thickness @ ; both are physically reasonable measures

[oR)

N

.. of the boundary layer thickness.

The displacement thickhess 1is defined by

,
8" =8 [ [1-T(n)lay ,
° .

and the pulse loss thickness by .

;
3= 6[ U(q) (1 -T(q)lay .
o

For the basic profile from Section 5, we calculate [§* - 0,1334 ‘8| and

- @ =0,09958]. From this we immediately obtain {§" = 1,342 9| or [y = 0,746 6. '

. The Reynolds number formed with the displacement thickness is designated as

"Re*," and the value referred to the pulse loss thickness as [Regl. Analogously,

for the Gortler parameter, F}’ a 2 Re’?'—g-‘-rj and\fo = 2 Rey Z-Rl-. .

J. Nikuradse ([19]; cf. [1], page E(TQ\) has shown that affine velocity
profiles appear with turbulent plate flow in the range of Reynolds numbers

[ / :
1,710 = Re_ SJ_M (x'= path distance) if is plotted vs. -6‘-1 if

the path length x is replaced by the boundary layer thickness by meaﬁs of the -

conversion formula given in ([1], page 275])

-1/5
8(x) = 0,37 (Re,)

then this applies correspondingly for the parameter value &5,6 . 1_94; 3052.4J

l ‘;6‘5. and, according to the relation

. * -01,139
T TT o Tm T 8 (x) = 0,1738 (R.x) x

Q.2 o l

/30
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. found in [19], for the Reynolds numbers ,: 10°< Re" = 3.10%: As J. Nikuradse
2 ' ([20]; see [11, page_éng has also established in the study of turbulent tube

flow, the dimensionless kinematic apparent viscosity plotted vs. the dimension-

less wall distanéé.§gry rapidly approgEEéé ;>iimiting curve with increasing
Reynolds number. That is, with sufficiently large Reynolds number (Y 105)

the turbulence mechanism no longer changes, and the turbulence is ''saturated".
i We assume that in turbulent boundéry layer flow also the apparent kine-
matic viscosity m(n) does not change significantly with tﬂe Reynolds number.
Then if we vary the Reynolds number within the range as delimited above and :
| refer the results to, we can use the profiles of U(n) and m(n) given in

Section 5 to study the dependence of the curve of critical curvature on the

Reynolds number.

%
Figure 7 shows the curve of the critical Gortler parameter S wvs. 45*]
‘ * e ;
i for different values of the parameter Re . The starting functions (a) and (b)

. B - 2% S
were used for approximation. As was to be expected, the curves of E¢5 )\

'

are shifted as a whole upward with increasing Reynolds number, while the

abscissa of the minimum hardly changes.

| If we plot instead the critical curvature formed from the displace- . /31
" ment thickness at various Reynolds numbers vs. , then it appears, as can be
seen in Figure 8, that the curves differ only slightly from each other. To

be sure, they are lower the larger the Reynolds number,

Finally, let us make a comparison with experimental results. I. Tani
{21] has made velocity measurements in laminar and turbulent boundary layers
along a concavely curved wall. 1In every case, he found that the lines of

constant velocity have periodic fluctuations in the z-direction. The amplitude

/' of these fluctuations becomes greater with increasing path length of the flow,ff
t” while the wavelength hardly changes. These fluctuations could be explained -8
oo R R : TR R

_+ as the result of a system of longitudinal vortices.

N
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Curve of the critical GOrtler parameter {
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.

In the laminar case, the results .
of I. Tani agree well with the values |
calculated in [2], [4], and [6]. But .
because he knew of no theoretical or
experimental studies on whether longi-
tudinal vortices could occur at concave
wélls even in turbulent boundary layers,
he set up the following deliberations
to find comparison values:

In laminar flows, the perturb-
ations build up even at relatively
small Reynolds numbers [6]; but certain
turbulent flows behave like laminar .-
ones [22] at a low Reynolds number
which one can obtain-by- replacing  the. 3

kinematic viscosity v by the turbulent p



Y

L

AN

viscosity v

T
change in the velocity profile has little effect on the curve of the Gortler

fﬁ;thermore,-the studies in [2] and [4] have shown that a small

parameter produced with the pulse loss thickness.

From this I. Tani concludes that the stability diagram given by A. M. O.
Smith [6], which shows the parameter|G .J%_ T | as a function of iS‘, also
applies for concavely curved boundary layers if v is merely replaced by Ve

Following F. H. Clauser [22] he used for this the approximation which is valid,

fér the outer 80 - 90% of the boundary layer, . Then if he ?

- i

assumes, following [22], that , the Reynolds number in G can be }
1

/33
= 43, and the parameter for the turbulent{

- replaced by the ngmber 0.018 - 1.3

i boundary layer is.cT - 43

R
o

The Clauser approximation!vr = 0.0181;6" corresponds approximately to

~ the maximum value of the effective viscosity calculated in Section 5. That is;

if in

N V_,e(8
M(q) = _!‘.'“_)..1“.(1')..!_3.’
(] 5.

" with

Max a(7 ) = 0,0025 % - 1.5J

033:1

| we neglect the contribution from laminar viscosity, then we have

_———

e - i
0”:“:1 Vers{N) & 0,0025 . 7,5 u, 8 = 0,0188 ub

in

The solutions of (4.5) can better be compared with the critical curve of

A. M, O. Smith if v in G is replaced by an avérage value for the effective

[¥%]

3 ‘ﬁiéébéit&.”AAEHEhéﬂaverage value of m(n) we find m = 0.0016. As above, with

N2



NI

;;eter G corresponds to the value QG - 62 %%— .

thlS we obta1n the mean effective viscosityl ¥ ﬁgg = 0,016 ud| Then the param-

o

| Figure 9 shows the neutral curve (L) of A. M. O. Smith [6] for laminar
‘flOWS as well as the newly calculated critical curve for the incompressible
case from G. Himmerlin [7]. Curves (3) and (4) were obtained as approximate

|
'solutions with turbulent basic flow w1th the startlng functions (a) and (b) for1

e ——————3—
'the parameter valueE:' 7 - 104(Re = 9,3 .107, Beo = 7 . 103) . They are plotted
|asnd (10,—;]—/¥ )= diagrams. ;

! |
! The results of I. Tani's measurements at concavely curved walls with radii]

‘of curvature R = 5 m and R = 10 m are also plotted in Figure 9. With the i
'radius of curvature of 5 m, a wavelength of about 6.5 cm was observed, and thus

‘the wave number o = 1, With R0 10 m, it was estimated that o = 2.

For the log-log plot used in Figure 9, the measurements for vortices of - /34
constant wavelength lie on straight lines because of the identity |43 Vr—~ i
!-7é%q «d As the wavelength of the vortex hardly depends on the 1nc1dent ‘
flow velocity, these straight lines almost coincide at the same radii of
‘curvature.

f As was to be expected, the experimental values are significantly higher

‘than the theoretically calculated curves of critical curvature. Here we must

;consider that I. Tani found a built-up vortex, while the theoretical consider- '

fatlons are based on neutral perturbations.

| | |

iAl. The Coordinate System /35

i

} The basic quantities of the orthogonal coordinate system introduced in
j?Section 3 arise from the following deliberations: 0
i vy

R Y S e et

(A

In the Cartesian t system, the lines y = constant are descrlbed by

128 L



asm 1% :
w L : (al.1)
Lo Ta2 " 2 2 |
\ y ‘t + [ -{8(y) +5})° = R(Y) /
as N @ The differential équation fo r :
this family of curves is
a2

a ‘ : | z
a0 L] (7] [} fn ~-£
a6 oS ) o (i‘%. 1--(——7—1‘_ Fay g (A1.2)

|

i

; ﬂ R 0; ’/ﬁ:“/ 2 In order to eliminate the

i ASm 7

; °5 20 arameter we solve (Al.1
1w 0 1 P~ P b ( )

L~ for fi:

/ - | (1‘-]- R(y) +y - VR(‘ar)2 - Ea ['[

In the vicinity of the fi-axis,:

{

where the orthogonal grid is

B B

| only defined, the estimate

2
?;j—}-«d applies, so that,
approximately, fi = y.

Figure 9. Comparison of the measurements of
I. Tani with the theoretically calculated
critical curves: (1) A. M. O. Smith [6]; The differential equation'
(2) G. Himmerlin [7]. Curves (3) and (4)
were calculated with approximations (a)
and (b). the parameter x = constant now

of the orthogonal family with

appears from (Al.2) to be

'd'q_--RE“)P R(ﬁ)'noekn' P
dg '

1

and its general solution is | K(x)E = e R(R)
L
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- f

To determine K(xX) we now set n = 0, thus obtaining /'RX)E =e ©°/. On
the other hand, |x( E )s is calculated as the arc length at the wall (y = 0) from

s
o

a 2 n - ~
-é-dg-n I (idng-) with N = Ro - VRO)' w g‘
b

giving
1. F & £
x(E)= f dt « R arc sing—.
o Iio . [}
"~ 2 T
Now it is approximately true that -g_ . .m.g_ ..i._, if only (X <<i{, SO
X _— o o o R
that we obtain ' ]
X(x) = <o °
Thus we obtain
-1 1
)
E=xe ° :
N=7
g = 8 o

A2, Approximation Polynomial

a) Basic velocity profile

For .\Os 1= 0.027}

ﬁ(‘l) - 104,964 y - 851,20 1° + 3335187> - 5030864 7* \

For [0,02% Y 50,08 1|

T,(n) = 0,45063 + 7,57708 4 - 121,677 %% + 1147,71 o’
- 4269,49 q* | -

For mis M 51,.\
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T,(m) = 0,54067 + 2.53040 m - 10,5938 1%+ 33,2311 2 |
- 61,6051 W4 + 65,7088 3 - 37,3249 7° + 8,71278 TI7 .

For ‘1];1 '
.64(1‘) 1,

b) Derivative of the basic velocity profile

Forlos ns 0,02 q

u' (q) =0, 105 - 20,0867 n + 1657,76 1‘2 - 65138,9 113
+ 990556 74) - 10% .

For p,02= ¢ = O,Qﬂ

u*(-q) = (0,026765 ~ 3, 03591 N+ 1b5,6218 72 - 5040 5121\
+ 99725,96 - 9618260 'q + 5557002 1|
- 13505490 v ) - 109 .,

ForE)OBS 1\:0. 1

() - 3,56967 53.670211 + 367,814 7 - 1300,45 7
+ 1654,66 1'|

For 5,2 sqs1 ‘ll
2

Ti(m) = 1,34694 - 7.500791| + 30.545‘- N -.82, 501461|
+ 148,4773 14 - 169,8662 1° + 109,3569 0° - 29,8578 77

For @ 2

¢) Thrust stress of the turbulent flow

For m s T a’




a(q) = (1,41 - 0,2308 1 - 1,9604 7% - 1,0938 4> + 2,1354 7°
- 0,2604 47) - 1072

For

d) Dimensionless turbulent apparent viscosity

For 0s v =0,2 4]

m,(n) = 0,40835 4° - 3,9185 1,’ + 14,765 % - 20,150 3° f

For (0,2 = =0,9 3]

m, (M) = (0,345397 + 16,7883 7 - 64,0363 7 + 198,474 7
- 464,887 .“4 + 637,583 TIS - 454,883 1‘6 + 130,567 1|7) . 1073,

For [6‘,‘955 ~qs1 t,

[/;;(1{) = - 4,3546 + 17,5412 7 - 26,4186 nz + 17,632 113 - 4,4 ﬁ[‘.,

rooen

For[Mz 14 i
o, ( M )= 0 .

e) Derivative of the turbulent apparent viscosity

For [0 =1 =0,2 4

[53(n) = 0,82525 | - 12,0374 3° + 61,5360 2 - 107,161 3,

For 0,2 59 20,95 1]
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('q) - o ,0167883 - 0 1280725 N+ 0.595421 'q - 1,859550 ’n
+ 5 187914 n = 2,729299 n + 0,913966 N

For [0,95 S | S 1 4| . : - S

ni(N) = 17,5412 - 52,8372 + 52,896 ° - 17,6 3>

For 1] =1 s;_l
[=in) =04

A3. The Method of Galerkin

This section describes how the method of Galerkin {16, 17] is applied to
determine eigenvalues and eigenfunctions for linear homogeneous differential
equations with linear homogeneous boundary conditioms. 1In order to explain
the method, it is sufficient to consider a differential equation containing .
one independent parameter. Then, by obvious generaiization, we obtain a rule

for the treatment of differential equation systems.

Given a differential equation of nth order

E([x] +SL[x]= o] (A3.1)

with n linear homogeneous boundary conditions within an interval [a, b], with
x = x(t). Let S be the independent parameter and K, L be differential operators

of the form

3 rm 8
£, t)_v.w
vl at (A3.2)

To determine an approximate solution of the eigenvalue problem, we first

establish a function F:: ;(ti°1v°2o--~o°qﬂ which for arbitrary values of the
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independent constants ¢ ooy cq satisfies all the boundary conditions. If

l’
these are linear, 'as in the present case, then & can be chosen as a linear

combination of q independent linear functions ﬁl’ ceey ﬁq-whichvagain satisfy

the same boundary conditions:

~ ~ n -~ ’
xX=Xom= z X, o (A3.3)
kai

with |3 « (i1""’iqi and c' = (cl, cees cq), where ' indicates a transposed

matrix.

Let A;(t) be the defect function which arises if the approximation & is :

inserted into the left side of (A3.1):

K(%] + s L [X) = A(t).]

For a good approximation, tﬁis defect should in a certain sense be the
"smallest possible" in the entire interval: . In order to achieve this, we
follow Galerkin, selecting the independent constants Cis wevs cq so that variously
weighted means of the defects, integrated over the interval [a,b], vanish. As
the multipliers, we can use the starting functions. themselves (or the first gq
functions of a complete system). As the operators are linear, there arises in
this way a system of q simultaneous linear homogeneous algebraic equations in
1°

the unknown constants c ooes cq, which can be written in matrix form as

follows:

) 3
( f X' K[X]at + S f %1 L[X)at)o = ©
a a

or, briefly

L(A +SB)oa o,
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where A and B are matrices of q columns, and the designation § for the parameter

indicates that we are here dealing with approximate values.

Nontrivial solutions of the equation system exist only if det (A + S B) = 0.
But since A and B are not singular with linear independent starting functioms,

this yields a polynomial of the qt--'h degree in 8, the roots of which, §l’°"’§q"

represent approximations to the desired eigenvalue S. For each § we obtain a

set of constants c ooy cq, which are defined only up to a common factor, and

1’
which, inserted in X approximate the matching eigenfunction.

Galerkin's method can be applied quite analogously to the approximation
of eigenvalues and eigenfunctions of a system of r differential equations of
degree < n, with corresponding linear homogeneous boundary conditions. Let the

differential equations be summarized in the expression

K(x) +S L |x] =0 (A3.4)

where x(t) is now the vector of the independent variables, x' = (xl, cees xr),
and K and L indicate matricgs’of r columns, the elements of which, Kij and |
Lij’ j=1,-..., r, consist of operators of the form (A3.2). If the differential
equations are linear and independent, then either det K # 0 or det L # 0.

Each of the variables x 1, ..., r, is now approximated again by a

s A

linear combination of q linear independent functions ii ceey iiq which meet

1’
the matching boundary conditions:

a~ ~ r ~
=X o4 2 Xy oy
km

. o = (% A; LI .
with Xi. (Xil’ ey Xiq) and c g (Cli’ v qu) so that, corresponding

to (A3.3), we can make up the formulation

35
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1 x1.0 0. seey O 0.1 l

~
¢ o o o 0 o 0o @ . = Xo

x 0 0y «oe i -] J
r P O T | (A3.5)

If we insert x into the system, we obtain the defect vector

\x[;{;s L] = & = (B yreuey A0,

and the Galerkin equations can be represented formally again as the matrix

product

b

B
( [ X' K[X]at + 5 f X' L[X]dt) ¢ = O
a &

or

\(a+§l’r )O-OJ

with matrices BZ]and [P having rq columns. If the equation system is written
out extensively, we obtain from the ith differential equation in particular

the q equations

-

.

b
~ q ol q ~

] Xil [‘1’ [ Z X1k °k1l LAFYY IR J ‘ir [ z er °kr] } at +
a w1 k=1

b
a ] |
3 B S EYN B N SR IS T D2 S B .04
a kw1 ket |

3

i 1w 1,250005q
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But this means that the defect Ai in the interval [a,b] of the series is
to be orthogonalized with respect to all the starting functions for X, . Then
every operator Kij of the differential equation system contributes to the ele- '

ments of a q-column submatrix Aij of O. They can be calculated from

b
!xn x“[xak]dt - (Au)u.

The submatrices, which belong to one of the operators'Kij # 0 or Lij #0
are also not singular here, because the starting functions for each of the
dependent variables X, i=1, 2, ...t, are selected linear and independent.

With independent differential equations, therefore, at least one of the matrices

‘aﬁ;ﬁ must be regular. The approximate values gv,V=1,2;...,rq, for the

desired eigenvalue S are the roots of the characteristic equation of the matrix

lgi}?‘f1i)]or, in case det @ﬂ = 0, the reciprocal eigenvalue of\&i@{i{ﬂ}). /42

The set of rq constants belonging to §V provides approximations for the ;

eigenfunctions.

A4, The Numerical Solution

To solve the system (4.5) — i.e., to calculate the smallest eigenvalue
Sl and its eigenfunctions — the method of Galerkin is used. In the notation
of Section 3 (with r = 3; X} S U; Xy =V, Xy = p) the differential Equations

(4.5) are

Kyqlu] + K,,lv] S =0
ng[vj * xﬁj‘[p] +8 1;2115\,] - 0‘
Kolvl a8y (3] =0,

with the operators {(D -%‘—‘)
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2 02 . o ‘

x11-M(n-c)+M'n K1z"“'f

2 2 _p

y Kaz"Mu"")" 2 M'D Kp3 = D
' Ky, = M(D - a%) + M (0% 4+ 0?) Kys = -c?
-w— ‘

Loy = -~ U B

and otherwise zero.

Following the ideas in Section 6, we select as the s;ﬁrting functions

n L o
ﬁ1k = (1 - 9-.") Tk e 1k1|
n
;2k a (1 - N ) 2k o
n
- (1 - e-") k e

T

-rjkn

P’k

in which k =1, 2, ..., q; n.. is greater than or equal

to zero throughout; T is greater than zero.

The boundary conditions u = v =v' =0 at n =0 and n > © as well as the
relation p(») = 0 which follows from (6.1.3) are fulfilled if the exponents

are selected so that n,_ =1, x B2 = o} Furthermore, we must note that

1k 2 Mok
the starting functions are linear and independent with respect to each of the

variables — that is, that for any two starting functions, the exponents of /43

(1 - e_n) or of e | are different.

Now we set up the Galerkin equations\? o .5 &) o -J by the method

described in Section A3. That is, we introduce the approximations 4, ¥, p into
‘the differential equations and orthogonalize the first defect in the interval

(0, ©) of the series according to all the starting functions 4., , the second

1k
and the third to §3k' To calculate the elements of 0] and [&r], we must

A

to V2k’

evaluate integrals of the form

ft‘('q) (1 -0 1)2 e T an .
o]
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where f(n) can be one of the coefficient functions ﬁ(n),[ﬁﬁ“z;iS:N—FiCij] and

M'(q)] . Because [U'(q) = M) = 0 for (=1, the integration interval

for the corresponding summands reduces ﬁrom the first to the interval [0, 1].

Both of the other coefficient functions can be répféséﬁted'ask1f1\)"1 + Reﬂﬂ‘[]

and rLﬁ('q) -1 4 (ﬁ('q) -’1)] withFl(‘n) - ﬁ(ﬂy) -1 '?] for , so that here

again we can divide the integration into

oo 1 ) -
J-eh? e Nan + !3(1,) (1-eM ™M aq
[+ .

If we apply the already known polynomial (see A2) to describe the coefficient
functions in the individual segments of [0, 1], we only have expressions which

can be integrated analytically. That is, we have

St X T
[fnte-v"] an - a:i tzo (o~%® (sa)” _ o-5P (ab) ) l (a1
d T & X1 L

To be sure, the complete amalytical calculation of the finite portion of the

integral leads to fourfold sums. Since the accuracy with which these sums can
be evaluated still depends on the exponents n and r, and is otherwise very
difficult to review, we have in most cases calculated the integrals numerically

by Simpson's rule.

In comparison, integration over the infinite interval was done analyti-

cally: (A4.1) yields first 4 : , 'f44

T ¢ -8% - t!
[

and from that there follows

") Mgy o S (1) 1
Jo-s e - 3 e B
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Corresponding to the operational notation of the differential equation

system, we can divide the Galerkin equations iﬁ +5¥) o= o0 as follows:

A11 A12 0 4] 0 0 ) 0.1
0 Aza A25 + 8 321 0 O © 2 =0,
(o] A32 A” (0] 0 0 0.3
| = ’ ’ ‘ . (A4.2)

By multiplication from the left with b("‘ (det Oty o)J , we can reduce the
eigenvalue problem of the matrix pair @igzgﬂ to

@ (a-1z’ +§~1Y)C-°’ (A4-3)

(‘é

and thus to the determination of the eigen-solutions of . g 1ﬂ . Let us

-
-_

again consider the matrix g['ﬂl to be analyzed into gq-column submatrices Xij
which we can calculate on the basis of the relation aa"ﬂ. fl from the nine

linear equations

- e

3
AyXyy = By 1yj = 1,2,3
k=1
Because
X9 X4 X435 ° 9o o X198 0 O
-1
B Xy, X, X, Byy O 0 =1 X8, 0 0
Xy, X3, Xy 0 0 o X558, O O
, . . _ -1 _ .
1t_is sufi1c1ent to knoYlthe submatrices X12 = —A11 AlZXZZ’ X22 = (A22 - A23
"Ag3hgy) T oand Xgy = —AgaAL X,

For the existence of a nontrivial solution vector of (A4.3), it is

required that
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L(}“ L+8 %) .'a

This provides an algebraic equation of degree 3q for §"1. Due to the structure

of & °, the characteristic equation breagks up into

ﬁanm +875,)8% .0 .\

with the 2q-fold zero point §_l = 0. The remaining q eigenvalues of E;ji?il}h
agree with those of —X12B21.

. -1
We calculate the greatest eigenvalue 31 , which corresponds to the

desired smallest eigenvalue §l of (A4.2), by the iteration method, iterating

[jﬂ“’ = = X458 °E‘1') J -

(0)
1

according to the rule

There the initial vector c must have one component of the eigenvector.
The calculation shows that the series of quotients of corresponding compo-
nents of two successive vectors converges, approaching a simple positive eigen-

value. The normalized vectors themselves approach the matching eigenvector

c(v+1)
N R N )
—c?;)— and] ¢yl 4 .

Using the eigenvectors c 1 of -X12B21, we determine the eigenvector c

for the eigenvalue §_1 of from

X428y 0 O . X282 .4 .4

- . a=1

X,Byy O O 0 = XppBpy o | =8 e, |-
X, B.. 0 0O 0 -X,.B.. o o

32°21 32521 .1
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The vector ¢ is simultaneously the eigenvector of (A4.2) for the eigen- /46
valuF_si,éPg_the desired eigenfunctions are given by e a1fL;J’ Ei:m?g:iﬁg
and E:j_géleig'

~

Sl can be calculated with any desired accuracy as the eigenvalue

from -XlZB21 by the iteration method. The elements of this matrix are, to be
sure, burdened\with errors arising in the calculation of matrix Xl2 from sub-
matrices of @@. The effect of these errors on the magnitude of the eigenvalue
can be estimated if we compare the results giveﬁ in performing the calculation
with the same starting functions but with a different sequence of the starting
functions. But it is not possible to state how far the approximations diverge

from the eigen-solutions of (4.5).

All the numerical computations were performed on the Siemens 2002 computer
system in the Computer Center of the Institute for Applied Méﬁhematics of the

University, Freiburg.
8. SUMMARY

In this work it is shown that Taylor-G&rtler longitudinal vortices can
occur in a turbulent boundary layer at a concave wall if the curvature of the

wall is large enough.

As in all such investigations, the theorem of vortex instability leads to
an eigenvalue problem from which a critical curvature can be determined for
neutral perturbations (and only these are considered here) at a prescribed
basic flow and for any perturbation wavelength. For a complete description of
the turbulent gasic flow, a profile of the turbulent apparent iigkosity and

the Reynolds number must be prescribed along with the velocity profile.

The eigenvalue problem is solved approximately by the Galerkin method for

a turbulent boundary layer flow described by P. S. Klebanoff. The results
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proved to be strongly dependent on the choice of the starting functions, but

they agree within an order of magnitude. In each approximation, the critical

curvature calculated for a given Reynolds number has a minimum value for a

certain wavelength. It increases for larger and smaller values of the parameter,

with increasing steepness. 147
Finally, the Reynolds number was varied within a certain range, on the

assumption that a suitably plotted basic profile would not change. For the

curves of critical curvature, this gives a slight shift to smaller values of

curvature with increasing Reynolds number.

In conclusion, the experimental results determined by I. Tani are mentioned.

The theoretical studies agree satisfactorily with them.
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